Representation Theorem for Convex Nonparametric Least Squares
نویسنده
چکیده
We examine a nonparametric least squares regression model where the regression function is endogenously selected from the family of continuous, monotonic increasing and globally concave functions that can be nondifferentiable. We show that this family of functions is perfectly represented by a subset of continuous, piece-wise linear functions whose intercept and slope coefficients are constrained to satisfy the required monotonicity and concavity conditions. This representation theorem is useful at least in three respects. First, it enables is to derive an explicit representation for the regression function, which can be used for assessing marginal properties and for the purposes of forecasting and ex post economic modeling. Second, it enables us to transform the infinite dimensional regression problem into a tractable quadratic programming (QP) form, which can be solved by standard QP algorithms and solver software. Importantly, the QP formulation applies to the general multiple regression setting. Third, an operational computational procedure enables us to apply bootstrap techniques to draw statistical inference.
منابع مشابه
Nonparametric Multivariate Regression Subject to Constraint
We review Hildreth's algorithm for computing the least squares regression subject to inequality constraints and Dykstra's generalization. We provide a geometric proof of convergence and several ehancements to the algorithm and generalize the application of the algorithm from convex cones to convex sets.
متن کاملA Canonical Process for Estimation of Convex Functions: the “invelope” of Integrated
A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process “the invelope” and show that it is an almost surely uniquely defined function of integrated Brownian motion. Its role is comparable to the role of the...
متن کاملEstimation of a K − Monotone Density , Part 1 : Characterizations , Consistency , and Minimax Lower
Shape constrained densities are encountered in many nonparametric estimation problems. The classes of monotone or convex (and monotone) densities can be viewed as special cases of the classes of k−monotone densities. A density g is said to be k−monotone if (−1)g is nonnegative, nonincreasing and convex for l = 0, . . . , k−2 if k ≥ 2, and g is simply nonincreasing if k = 1. These classes of sha...
متن کاملConsistent Nonparametric Estimation of NARX Systems Using Convex Optimization, Report no. LiTH-ISY-R-2721
In this paper, a nonparametric method based on quadratic programming (QP) for identification of nonlinear autoregressive systems with exogenous inputs (NARX systems) is presented. We consider a mixed parametric/nonparametric model structure. The output is assumed to be the sum of a parametric linear part and a nonparametric Lipschitz continuous part. The consistency of the estimator is shown as...
متن کاملStochastic Nonparametric Envelopment of Data: Cross-sectional frontier estimation subject to shape constraints
The field of production frontier estimation is divided between the parametric Stochastic Frontier Analysis (SFA) and the deterministic, nonparametric Data Envelopment Analysis (DEA). This paper explores an amalgam of DEA and SFA that melds a nonparametric frontier with a stochastic composite error. Our model imposes the standard SFA assumptions for the inefficiency and noise terms. The frontier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006